63 research outputs found

    Coalition Formation in a Legislative Voting Game

    Get PDF
    We experimentally investigate the Jackson-Moselle (2002) model where legislators bargain over policy proposals and the allocation of private goods. Key comparative static predictions of the model hold as policy proposals shift in the predicted direction with private goods, with the variance in policy outcomes increasing as well. Private goods increase total welfare even after accounting for their cost and help secure legislative compromise. Coalition formations are better characterized by an efficient equal split between coalition partners than the stationary subgame perfect equilibrium prediction

    A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome

    Get PDF
    Citation: Chapman, J. A., Mascher, M., Buluç, A., Barry, K., Georganas, E., Session, A., . . . Rokhsar, D. S. (2015). A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology, 16(1). doi:10.1186/s13059-015-0582-8Polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible to construct a mapping population. © 2015 Chapman et al. licensee BioMed Central.Additional Authors: Muehlbauer, G. J.;Stein, N.;Rokhsar, D. S

    Performance analysis of priority queueing systems in discrete time

    Get PDF
    The integration of different types of traffic in packet-based networks spawns the need for traffic differentiation. In this tutorial paper, we present some analytical techniques to tackle discrete-time queueing systems with priority scheduling. We investigate both preemptive (resume and repeat) and non-preemptive priority scheduling disciplines. Two classes of traffic are considered, high-priority and low-priority traffic, which both generate variable-length packets. A probability generating functions approach leads to performance measures such as moments of system contents and packet delays of both classes

    Multimedia document architecture for medical applications

    No full text
    corecore